WGS Applications in FDA’s Foodborne Outbreak Response

Brooke Whitney, Ph.D.
Coordinated Outbreak Response and Evaluation (CORE) Network

IFSH
May 6, 2019
Topics

• CORE Background

• Examples of WGS impact on traditional outbreak investigations

• Retrospective outbreak investigations

• Challenges & Opportunities
Role of FDA in Foodborne Outbreak Investigations

- Traceback of suspected foods to their source
- Food and environmental testing
- Communications – Public, internal, congressional
- Product and regulatory actions
- Environmental assessments of farm or production facilities
- Regulations and guidance to prevent outbreaks
Coordinated Outbreak Response and Evaluation (CORE) Network

Launched August 1, 2011, and currently includes six multidisciplinary teams

Created to coordinate FDA’s activities
 – Signal Evaluation/Surveillance
 – Response (three teams)
 – Post-Response
 – Communications

Outbreaks due to FDA-regulated food, dietary supplements, and cosmetics
Role of States in Foodborne Outbreak Investigations

• Multiple state and local agencies are involved in foodborne outbreak investigations: Health, Agriculture & Environmental Health Departments, Public Health Laboratories

• States (and localities) detect and respond to localized foodborne outbreaks and collaborate with federal agencies during national investigations

• States complete WGS of food, environmental, and clinical isolates

• Participate in PulseNet and (in some cases) Genome Trakr
WGS and The Changing Face of Foodborne Outbreaks

- Replaces PFGE as primary molecular characterization
- FDA uses WGS to identify links between FDA product or environmental isolates and clinical isolates
 - *Listeria monocytogenes*, STECs, and *Salmonella*
 - Routine and dynamic comparisons between sequences of food/environmental isolates and sequences for clinical isolates
- FDA performs WGS on all foodborne pathogen isolates from FDA samples

Use of WGS for foodborne outbreak detection and response should result in:
- Identification of more clusters, smaller case counts
- Shift in temporal boundaries of an outbreak (longer range)
- Greater clarity of relationships between isolates
- Improved targeting of resources
- Enhanced foodborne illness attribution
- More retrospective outbreak investigations

WGS is one of many pieces of the outbreak puzzle
E. coli O121 in Flour, 2016: The Epi Signal

- **February 2016**
 - CDC notifies CORE Signals of *E. coli* O121 cluster (PFGE based)
 - Focused questionnaire developed with emphasis on romaine, broccoli, and beef
- **March 2016**
 - No clear signal from focused questionnaire
 - CDC conducts open-ended interviews
- **April 2016**
 - 9/9 home bakers identified
 - 6/10 report consuming raw dough

Epidemic curve indicative of vehicle with longer shelf-life

WGS used to:
- Demonstrate that a 2015 beef isolate matching by PFGE was *not* highly related to clinical cluster isolates
- Refine case definition, support common source hypothesis
E. coli O121 in Flour, 2016: Traceback and Laboratory Evidence Confirm the Vehicle

- Restaurant 1, MD
 Likely pack date: 11/18/2015

- Restaurant 2, VA
 Likely pack date: 11/18/2015

- Restaurant 3, TX
 Likely pack date: 1/6/2016

- Colorado, Brand A flour
 Manufacture date: 11/14/2015

- California, Brand A flour
 Manufacture date: 11/22/2015

- Washington, Brand A flour
 Manufacture date: 11/15/2015

- Oklahoma, Brand A flour
 Manufacture date: 11/10/2015

Distributor A
VA and TX locations
No product manipulation

Manufacturer A
Flour Mill, MO
Product: Brand A flour
Product: Foodservice flour

Epidemiologic Signals point to flour

Raw dough exposure at restaurants noted.

Flour supplier and likely manufacture dates ascertained – recall initiated 5/31/16

Positive product sample confirmed by FDA

Positive product sample confirmed by FDA outside of recall bracket. Recall expanded 7/1/16
Example: Bringing PFGE Patterns Together (LM/bagged salad mix)

1509MLGX6-1WGS

wgMLST Analysis

<table>
<thead>
<tr>
<th>Id</th>
<th>State Id</th>
<th>PFGE Ascl pattern</th>
<th>PFGE Apal pattern</th>
<th>Outbreak</th>
<th>Serotype</th>
<th>Source Site</th>
<th>Source Site</th>
<th>Isolated Site</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDNBL1001022</td>
<td>LA_C101197</td>
<td>01/01/012/015</td>
<td>01/01/012/015</td>
<td>1509MLGX6-1WGS</td>
<td>01/01/012/015</td>
<td>01/01/012/015</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PDNBL1001023</td>
<td>LA_C101197</td>
<td>01/01/012/015</td>
<td>01/01/012/015</td>
<td>1509MLGX6-1WGS</td>
<td>01/01/012/015</td>
<td>01/01/012/015</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PDNBL1001024</td>
<td>LA_C101197</td>
<td>01/01/012/015</td>
<td>01/01/012/015</td>
<td>1509MLGX6-1WGS</td>
<td>01/01/012/015</td>
<td>01/01/012/015</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE: Removed IL_134923 as part of the analysis though it is included within the 4[0-12] range of isolates

Pending WGS results on:
CA__ML5073038
NY__EN90090292604
CT__562143081

PFGE Ascl

PFGE Apal

PFGE Ascl pattern	PFGE Apal pattern
GX6A18.0135 | GX6A12.2837
GX6A16.0135 | GX6A12.0348
GX6A16.1261 | GX6A12.0348

Three different PFGE pattern combinations in this WGS analysis.

WGS analysis by Enteric Diseases Laboratory Branch, CDC

Updated: 2016-01-15
Example: Breaking Patterns Apart

(Salmonella Pseudo-outbreak)

1601AZJPX-1 Salmonella Typhimurium

<table>
<thead>
<tr>
<th>WGS_ID</th>
<th>Key</th>
<th>PFGE-XbaI-pattern</th>
<th>Outbreak</th>
<th>SourceSite</th>
<th>IsolateDate</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016K-0046</td>
<td>AZ_AZ00038225</td>
<td>JPXX01.0171</td>
<td>1601AZ/PX-1</td>
<td>Blood</td>
<td>11/30/2015</td>
</tr>
<tr>
<td>2016K-0045</td>
<td>AZ_AZ00038375</td>
<td>JPXX01.0171</td>
<td>1601AZ/PX-1</td>
<td>Tissue</td>
<td>12/13/2015</td>
</tr>
<tr>
<td>2016K-0043</td>
<td>AZ_AZ00038793</td>
<td>JPXX01.0171</td>
<td>1601AZ/PX-1</td>
<td>Pleural fluid</td>
<td>12/23/2015</td>
</tr>
<tr>
<td>2016K-0044</td>
<td>AZ_AZ00039196</td>
<td>JPXX01.0171</td>
<td>1601AZ/PX-1</td>
<td>Blood</td>
<td>1/4/2016</td>
</tr>
<tr>
<td>PNUSA001499</td>
<td>TX_TXAML600241</td>
<td>JPXX01.0171</td>
<td>1601AZ/PX-1</td>
<td>Stool</td>
<td>1/18/2016</td>
</tr>
<tr>
<td>PNUSA001496</td>
<td>MN_E2014014748</td>
<td>JPXX01.0171</td>
<td>1601AZ/PX-1</td>
<td>Stool</td>
<td>8/20/2014</td>
</tr>
<tr>
<td>PNUSA001527</td>
<td>CA_M1S007167</td>
<td>JPXX01.0171</td>
<td>1601AZ/PX-1</td>
<td>Stool</td>
<td>12/5/2015</td>
</tr>
<tr>
<td>PNUSA001528</td>
<td>CA_M1S007426</td>
<td>JPXX01.0171</td>
<td>1601AZ/PX-1</td>
<td>Fluid Joint</td>
<td>12/19/2015</td>
</tr>
<tr>
<td>PNUSA001530</td>
<td>CA_M1S000289</td>
<td>JPXX01.0171</td>
<td>1601AZ/PX-1</td>
<td>Blood</td>
<td>1/6/2016</td>
</tr>
<tr>
<td>PNUSA001839</td>
<td>TX_TXAML600348</td>
<td>JPXX01.0171</td>
<td>1601AZ/PX-1</td>
<td>Stool</td>
<td>2/2/2016</td>
</tr>
<tr>
<td>PNUSA001840</td>
<td>CA_M1S006400</td>
<td>JPXX01.0171</td>
<td>1601AZ/PX-1</td>
<td>Blood</td>
<td>10/30/2015</td>
</tr>
<tr>
<td>PNUSA001841</td>
<td>CA_M1S006770</td>
<td>JPXX01.0171</td>
<td>1601AZ/PX-1</td>
<td>Blood</td>
<td>11/10/2015</td>
</tr>
<tr>
<td>2016K-0112*</td>
<td>MA_16EN0717</td>
<td>JPXX01.0171</td>
<td>1601AZ/PX-1</td>
<td>Stool</td>
<td>1/25/2016</td>
</tr>
<tr>
<td>2016K-0122</td>
<td>LAC_W3370</td>
<td>JPXX01.0171</td>
<td>1601AZ/PX-1</td>
<td>Urine</td>
<td>12/17/2015</td>
</tr>
<tr>
<td>2016K-0123</td>
<td>LAC_W67846</td>
<td>JPXX01.0171</td>
<td>1601AZ/PX-1</td>
<td>Urine</td>
<td>11/18/2015</td>
</tr>
<tr>
<td>2016K-0137</td>
<td>NM_201503598</td>
<td>JPXX01.0171</td>
<td>1601AZ/PX-1</td>
<td>Stool</td>
<td>12/1/2015</td>
</tr>
<tr>
<td>2016K-0139</td>
<td>AZ_AZ00034785</td>
<td>JPXX01.0171</td>
<td>1601AZ/PX-1</td>
<td>Stool</td>
<td>8/29/2015</td>
</tr>
</tbody>
</table>

Note: 2016K-0112 was excluded because it was different from everything else by 32,000 SNPs.

Settings:
LyveSET 1.1.4e used with reads trimmed using fastx_trimmer 5 bases from 5’ ends before mapping by SMALT. SNPs were called using Varscan at > 20x coverage, > 95% read support, and < 5 bp apart.

Reference: Complete genome of str. 140285 (CP001363 and CP001362) used as reference with prophage regions masked at 974189-985099, 1055358-1102365, 1281623-1335316, 1969240-1983175, 2090438-2145704, 2780087-2830859, 290589-295252, and 4341457-4451876.

Same PFGE pattern, yet wide variation in WGS

The methods used in the analysis of this sequence data are preliminary and remain under validation. Please email dfge@cdc.gov if you plan to use/distribute this phylogeny further.

2016-03-10

WGS analysis by Enteric Diseases Laboratory Branch, CDC
Example: Cross-Temporal Connections - *Salmonella* Anatum in Maradol Papayas 2017

Investigation begins - Papaya suspected as vehicle based on case exposures but traceback did not converge, no sampling conducted

Subsequent sampling of imported papayas in August 2017 yielded a positive sample matching an older cluster by PFGE and WGS

Investigation ends with papaya suspected

WGS
- Confirmed papaya as the outbreak vehicle
- Demonstrated the contamination was an ongoing issue over multiple months
Example: Firm A could not have supplied cases

- In 2015, FDA and CDC investigated a clinical cluster of *Listeria monocytogenes* with no clear epi signal.
- During the investigation, an FDA positive sample was found at Firm A; sample collection was unrelated to the investigation.
- Distribution and manufacturing information shared by field office for review by CORE.

Firm A could not have supplied product to cases based on distribution and shelf-life of the sole product manufactured.
Example: Firm B did not supply cases

- Outbreak occurred
 - Single State
 - Common supplier of meals
 - No specific vehicle identified
- Positive product sample from Firm B
 - About two months after outbreak
 - Matched the outbreak strain
 - Recall of product occurred
- Exposure
 - Cases may be have been served the commodity
 - Uncertainty around whether commodity was actually consumed
- Traceback/Traceforward
 - Documents collected did not connect Firm B to common caterer

While Firm B may have supplied the cases based on geographic distribution of the commodity in question, records demonstrated that Firm B did not supply those specific cases
Example: Firm C likely supplied some cases

- Positive product sample from Firm C
 - Not a RTE food
 - Product ultimately recalled
- Cluster of illnesses identified
 - Investigated as a result of positive product
 - Limited number of ill persons
- Exposure
 - At least one case had exposure to specific product either from Firm C or a different firm
 - Other cases had exposure to commodity, but not Firm C
- Traceback
 - Commodity for some cases would have been from a different firm
 - Due to limited number of cases, further traceback was not practical

Based on the positive sample and limited epi data, Firm C likely supplied product to some cases, but limited traceback and additional epi showed Firm C could not have supplied all cases
Traditional versus Retrospective Outbreak Investigations

Investigation begins with a cluster of illnesses

Epidemiology identifies a suspect food vehicle

Positive sample and/or Traceback Confirms Link Between Illness and Vehicle

Public Health and Regulatory Actions Occur

Investigation begins with a possible vehicle (positive sample)

Molecular tools (PFGE, WGS) identify suspect cases of illness

Epidemiology and/or Traceback Confirms Link Between Illness and Vehicle
Traditional versus Retrospective Outbreaks in Nut Butters

Traditional Outbreak Investigations

 715 cases, 129 hospitalizations, 0 deaths
 714 cases, 166 hospitalizations, 9 deaths
- *Salmonella* Bredeney (Company C/Brand C Peanut butter, 2012):
 42 cases, 10 hospitalizations, 0 deaths

Retrospective Outbreak Investigation

- *Salmonella* Braenderup (Company D/Brand D nut butter, 2014):
 6 cases, 1 hospitalization, 0 deaths
WGS Strengthens All Lines of Evidence

Direct Impact on Laboratory Evidence

- Greater confidence in isolate relatedness
- Breaks PFGE clusters apart, brings together different patterns
- Links isolates over long periods of time with greater certainty

Secondary Impact on Epi/Traceback Evidence

- Reduce some challenges that occur from including unrelated cases in PFGE-defined clusters
 - Example: Diffuse epidemiologic signals become strong when unrelated cases removed
 - Example: Tracebacks do not converge until unrelated cases removed
Challenges for WGS use in Foodborne Illness Outbreak Investigations

Integration
- Transition from PFGE to WGS in outbreak procedures
- Historical comparison

Interpretation
- How close is close enough?
- What does relatedness mean?

Prioritization
- How do we triage clusters for investigation?
- What is our new baseline/background?

Communication
- How do we communicate WGS results to different audiences (firms, lawyers, publicly)?